Pesticides Basics Substances that kill pests and other living things

Module Objective:

Trainees know and explain pesticide basics

Module Overview

- How pesticides fit info the project life cycle
- Brief evolution of pesticides, with issues
- Pesticide contents, labels, & formulation
- Older heavy metal & synthetic pesticides
- Problems with heavy metals & synthetics
- Pesticides from plants, microbes & insects
- Pesticide fate, resistance, impacts on humans and environment, groundwater

Why is this important to you?

- RFP: Write requirements for understanding pesticide types, formulation, resistance, & safety for each crop/animal production system
- Proposals: See evidence of understanding of pesticide types, formulation, environmental issues, resistance & safety management
- Environmental Assessments: Request that an IEE/PERSUAP is budgeted & undertaken by project, and be able to critique it

Why is this important to you?

- Monitoring: In the field, be able to ask questions about risks and understand pesticide products
- Markets: Ensure project links to GAP- or Organiccertifiable market demand

The Very First Pesticides

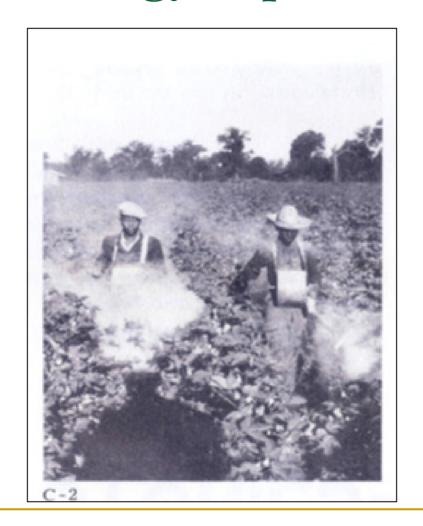
Inorganic metals

4500 years ago

- Elemental Sulfur— still used today
- Sodium Chloride (salt) weed killer— can still be used

600 years ago

- Mercury
- Lead
- Arsenic


200 years ago

Arsenates (copper, lead, calcium, magnesium)

1800s Rotary Hand Dusters: Has the technology improved since then?

Late 1800s - Early 1900s Pesticides

Plant Extracts

- Pyrethrum still used today
- Neem still used today
- Rotenone still used today
- Nicotine-Sulfur compounds
- Citronella still used today

Petroleum products

- Oils, Soaps still used today
- Kerosene still used today

Gasses

- Cyanide gone
- Methyl Bromide phasing out

Synthetic Organic Pesticide Development

- When? 1939 with DDT, followed by other "chlorinated hydrocarbons"
- Why? To kill malaria & yellow fever mosquitoes during World War II
- What? Pests controlled

Figure 57.—Refilling knapsack sprayers with oil, 8th Malaria Control Unit, New Guinea.

Problems: Unexpected things began to happen

- Need more & more pesticide to kill pests what happened?
- American Eagle populations declined rapidly—what happened?
- Blood samples from Eskimos in Arctic showed DDT contamination—what happened?

A pesticide is a combination of:

- Active Ingredient (AI), which kills the pest
- A surfactant which makes the pesticide stick to the pest or plant
- Sometimes a synergist which enhances the pesticide's action
- A carrier (like water, oil, or a solvent)

Pesticides with the same active ingredient may differ by:

- Concentration of active ingredient (20% versus 95%)
- Formulation of the product (what it is mixed with—carriers, activators, surfactants, stabilizers)
- Formulation type

NET CONTENTS, ONE GALLON

Some common pesticide formulations

- A = aerosol
- B = bait
- D = dust
- EC = emulsifiable concentrate
- F = flowable
- G = granules
- ULV = Ultra Low Volume
- WDG = wettable dispersible granule
- WP = wettable powder

Photo from Pesticide Shop

Most common types of pesticides

About 900 active ingredients in 20,700 products currently sold in world markets

Insecticides: kill insects

Fungicides: kill fungi

Herbicides: kill weeds

Less common types of pesticides

Rodenticides: kill rodents (mice, rats)

Microbiocides: kill microbes

Nematicides: kill nematodes

1920s Application: Has the technology improved since then?

Older types of synthetic insecticides

 Chlorinated hydrocarbon (DDT, Aldrin, Dieldren) 1940s

Organophosphates (Chlorpyrifos, Diazinon) 1950s

 Carbamates (Carbaryl, Bendiocarb, Propoxur)

Newer types of insecticides modeled after plant extracts

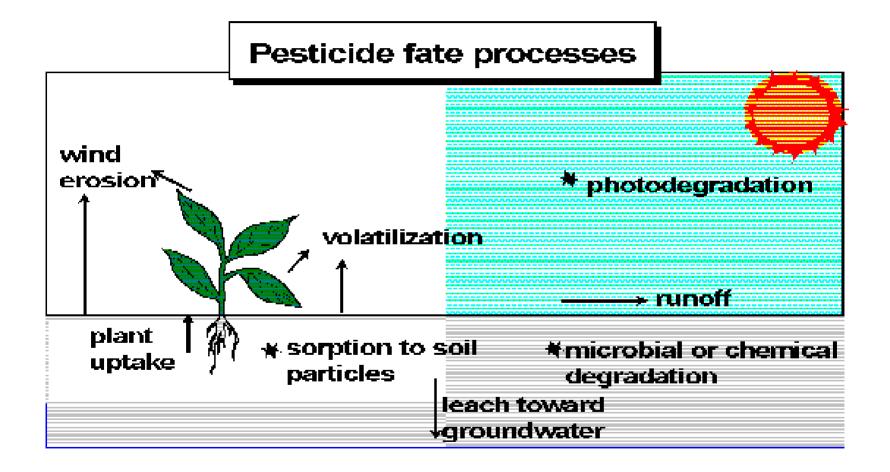
Plant extracted pyrethrum (mix of pyrethrins) revived from the 1800s

 Synthetic pyrethroids (cypermethrin, deltamethrin, lambda-cyhalothrin)

Chloro-nicotinyl (imidacloprid, thiacloprid)

Next generation insecticides

- Microbes (bacteria, fungi, virus)
- Microbial extracts
 (BT,abamectin, sphinosad)
- Insect Growth Regulators—IGRs (hexythiazox, methoprene)


Pesticide Impact on Humans

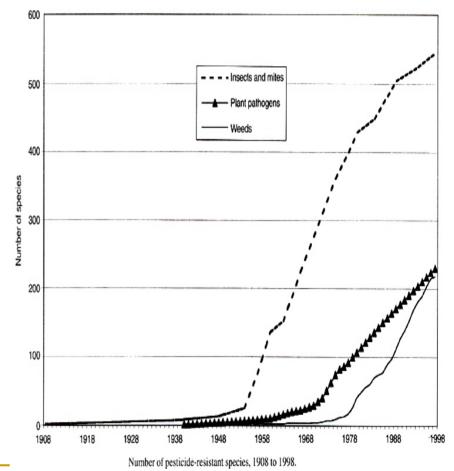
- Acute Toxicity: Some immediately (acutely) toxic to people by poisoning the nervous system leading to death—remember the 5 Pakistanis
- Chronic Toxicity: Some can be harmful over time by chronic effects on human health like Cancer, Parkinson's Disease, Sterility, Organ Malfunction and Birth Defects
- Some can enter groundwater (drinking water)

Pesticide Breakdown in Environment

Pesticide Impact on Environment

In the field, some kill honeybees & birds

In water, some kill fish, crabs, frogs, salamanders, aquatic insects & beneficial microbes



Other undesirable pesticide impacts

- Over-application may cause pests to develop resistance to a pesticide or class of pesticides
- May kill endangered species or animals in National Parks or protected areas

Wrap Up: What you need to know

Environmental & resistance risks

Pesticide breakdown in the environment

Acute & chronic health impacts on people

Most common types of insecticides

And, you should know about

- Next generation pesticides
- Positive evolution in safety since 1800s
- Many plant extracts that are not new, but still very useful (especially for Organic)
- Pesticide formulations & labels

You should be able to:

- Write requirements for understanding pesticide types, formulation, resistance, & safety for each crop/animal production system into RFP
- Recognize understanding of pesticide types, formulation, environmental issues, resistance & safety management in the **Proposal**
- Critique an IEE/PERSUAP for all of these issues

And, you should be able to:

 Confidently Monitor projects in the field, and be able to ask questions about risks and understand pesticide products

Group Exercise

Complete the short quiz on insecticide types
 & issues to be aware of

Discuss results with team

Discuss team findings with others

